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Abstract. The two-body knock-out reaction 4He(e, e′d)d is calculated at various momentum transfers. The
full four-nucleon dynamics is taken into account microscopically both in the initial and the final states.
As NN interaction the central MT-I/III potential is used. The calculation shows a strong reduction of the
coincidence cross-section due to the final-state interaction. Nonetheless, the theoretical results exhibit a
considerable overestimation of the experimental cross-section at lower momentum transfer. Comparisons
with other, less complete, calculations suggest that consideration of a more realistic ground state might
not be sufficient for a good agreement with experiment, rather a more realistic final-state interaction could
play an essential role.

PACS. 21.45.+v Few-body systems – 25.30.Fj Inelastic electron scattering to continuum – 27.10.+h A ≤ 5

1 Introduction

Electron-induced two-body knock-out reactions are con-
sidered to be an important tool to investigate nucleon-
nucleon (NN) correlations in nuclei. In comparison to one-
nucleon knock-out processes two-nucleon emission reac-
tions give more detailed information on NN dynamics,
while many important details are already integrated out
in the former case. Hence, quite a number of experimen-
tal and theoretical studies have been devoted to (e, e′NN)
reactions in order to study NN correlations (see, e.g., [1]).
However, it is often not very easy to obtain a clear picture
of the two-body correlations, in fact one would need the-
oretical calculations where all relevant effects contribut-
ing to the observable under investigation are taken into
account. For this reason in many theoretical works also
effects from final-state interaction (FSI), as well as meson
exchange and ∆ currents have been considered. Micro-
scopic calculations of two-body knock-out reactions with
the proper final continuum state have only been carried
out for two- and three-nucleon systems (see, e.g., [2,3]).
In more complex nuclei such exact and consistent studies
are still missing.

The aim of the present paper is as follows. We want
to consider the full FSI in a two-body emission reaction
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microscopically and at the same time go beyond the above-
mentioned two- and three-nucleon systems. To this end,
we consider the 4He(e, e′d)d reaction. The choice of this
particular reaction is based on three different consider-
ations. The first is that, differently from the two- and
three-body systems, 4He has some characteristics (bind-
ing energy per nucleon, density) rather similar to those of
heavier nuclei. Secondly, the (e, e′d) reaction has been sug-
gested as a particularly useful tool for investigating short-
range correlations (for a brief summary see [4]). In fact,
the 4He(e, e′d)d reaction was among the first NIKHEF ex-
periments dedicated to the study of NN correlations [5].
The third reason is that in ref. [6] large effects of FSI
were found in a two-deuteron cluster model. In this clus-
ter model a phenomenological d-d potential was used in
order to describe the final-state interaction. Different from
our calculation, in a deuteron cluster model channel mix-
ing in the final state cannot be taken into account. We
should mention that in ref. [7] it was suggested that chan-
nel mixing might be important for a correct theoretical
description of the NIKHEF experiment [5].

In the present paper we perform a rigorous calcula-
tion of the FSI of the four-nucleon system, where the nu-
cleons interact via an NN potential. We employ an inte-
gral transform method as outlined in ref. [8]. Particularly
suited for such kind of calculations is the Lorentz Integral
Transform (LIT), which was proposed in ref. [9]. In fact,
the LIT has already been used for the calculation of var-
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ious exclusive reactions: d(e, e′p)n [10], 4He(γ, p)3H [11],
4He(γ, n)3He [11] and 4He(e, e′p)3H [12].

Our paper is organized as follows. In sect. 2 we describe
the formalism of the 4He(e, e′d)d cross-section. A discus-
sion of results and a short conclusion are given in sect. 3.

2 Formalism

The longitudinal part of the 4He(e, e′d)d coincidence
cross-section is given by

d5σL
dek′dΩe′dΩd

=σM
Mdpd

2(1−(q/2pd) cos(θd))

q4µ
q4

FL(ω, q, θd).

(1)
We do not consider other cross-section parts, where the
transverse current is involved. The reason is that we in-
tend to compare our results to the data of ref. [5]. In [6] it
was shown that for the kinematics of that experiment the
transverse current contributions to the cross-section are
small. Such a result had to be expected and the smallness
of the transverse contribution should be valid in general.
The reason is that the leading transverse multipoles, i.e.

electric and magnetic dipoles (E1,M1), are suppressed. In
fact the 4He(e, e′d)d reaction is of isoscalar nature (both
4He and d have isospin 0). The unretarded E1 operator
does not induce isoscalar transitions (isoscalar retardation
effects are negligible at the rather small energy transfer
for the (e, e′d) reaction of [5]). Also the low-energy M1
operator is mainly isovector (sum of proton and neutron
magnetic moments is small). On the contrary, for the lead-
ing longitudinal multipole, i.e. the Coulomb monopole in
case of the NIKHEF kinematics, there is no such a sup-
pression. In eq. (1) ek′ and Ωe′ denote the energy and the
solid angle of the scattered electron, and σM is the Mott
cross-section. Energy and momentum transfer to the nu-
clear system are denoted by ω and q = qq̂, q2µ is the
squared four-momentum transfer, θd denotes the angle be-
tween pd = pdp̂d, the outgoing deuteron momentum, and
q, while Md is the deuteron mass. Note that for given
values of ω, q, and pd there is a unique deuteron knock-
out angle, θd. The quantity FL(ω, q, θd) is the longitudinal
structure function, defined as

FL(q, ω, θd) = (Gp
E(q

2

µ))
2
∑

M,M ′

∣∣〈Ψ−MM ′(Ed,d) |ρ̂(q)|Ψα
〉∣∣2 .

(2)
Here Ψ−MM ′ is the internal continuum final state of the
minus type pertaining to the d-d channel with a given rel-
ative momentum of the final d-d pair (denoted below by
k) and deuteron spin projections M and M ′. The quan-
tity Ed,d denotes the excitation energy of the four-nucleon
system,

Ed,d = εd,d − 2Ed + Eα with εd,d =
k2

Md

, (3)

where Ed is the deuteron binding energy and Eα is the 4He
binding energy. The four-body ground state is denoted by

Ψα, and Gp
E is the proton electric form factor. As nuclear

charge operator ρ̂, we take

ρ̂(q) =
4∑

j=1

1 + τ3
j

2
exp (iq · rj) . (4)

Here τ3
j denotes the third component of the j-th nucleon

isospin and rj represents the position of the j-th nucleon
with respect to the center of mass of the four-body system.

In our calculation we do not make use of the continuum
wave function Ψ−MM ′ , but instead determine FL(q, ω, θd)
by means of the integral transform method for exclusive
reactions [8] with the Lorentz kernel [9,10]. In this ap-
proach one avoids to treat a continuum state problem, one
works instead with a much easier bound-state–like prob-
lem. Our calculation is carried out in complete analogy to
the 4He(γ, p)3H and 4He(e, e′p)3H calculations of [11,12],
thus, in the following, we give only a very brief summary
of the method.

The starting point of the calculation are the transition
matrix elements

TMM ′(Ed,d) =
〈
Ψ−MM ′(Ed,d) |ρ̂|Ψα

〉
. (5)

They can be divided into a Born term,

TBorn
MM ′ (Ed,d) =

〈
φ−MM ′(Ed,d)

∣∣∣Â ρ̂
∣∣∣Ψα

〉
, (6)

and a FSI-dependent term,

TFSI
MM ′(Ed,d) =

〈
φ−MM ′(Ed,d)

∣∣∣∣VÂ
1

Ed,d + iε−H
ρ̂

∣∣∣∣Ψα
〉
.

(7)
In the above two equations φ−MM ′ is a product of the in-
ternal wave functions of the two deuterons, with spin pro-
jections M and M ′, and of the Coulomb function for their
relative motion with a given large-distance momentum.
The relative motion occurs in the average d-d Coulomb
potential. The potential V is the sum of all interactions
between nucleons belonging to different deuterons with
the average d-d Coulomb potential being subtracted, H
denotes the full Hamiltonian of the four-nucleon system,
and

Â =
1√
6
(1− Pαγ − Pαδ − Pβγ − Pβδ + Pαγ,βδ) (8)

is an antisymmetrization operator, where Pij is the per-
mutation operator for particles i and j and Pij,kl permutes
the particle pair (ij) with the pair (kl). For any i and j
one has

PijÂφ−MM ′(αβ; γδ) = −Âφ−MM ′(αβ; γδ) , (9)

where φ−MM ′(αβ; γδ) is the final d-d state with one
deuteron consisting of pair (αβ) and spin projection M
and the second deuteron consisting of pair (γδ) and spin
projection M ′. The calculation of the Born term is rather
unproblematic and leads to the so-called plane-wave im-
pulse approximation (PWIA) result. The FSI term is
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much more complicated and is calculated with the inte-
gral transform method. To this end, first, the following
identity:

TFSI
MM ′(Ed,d) =

∫
∞

E−
th

FMM ′(E)

Ed,d + iε− E
dE

= −iπFMM ′(Ed,d) + P
∫
∞

E−
th

FMM ′(E)

Ed,d − E
dE,

(10)

is used, where Eth is the break-up threshold energy of 4He
in the isospin T = 0 channel and

FMM ′(E) =
∑ ∫

dν
〈
φ−MM ′(Ed,d)

∣∣∣VÂ
∣∣∣Ψν(Eν)

〉

×〈Ψν(Eν) |ρ̂|Ψα〉 δ(E − Eν) . (11)

The function FMM ′ contains information on all the eigen-
states Ψν for the whole eigenvalue spectrum of H. In the
LIT method it is obtained by its Lorentz integral trans-
form

L [FMM ′ ] (σ) =

∫
∞

E−
th

FMM ′(E)

(E − σR)2 + σ2

I

dE

=
〈
Ψ̃2(σ) | Ψ̃1(σ)

〉
, (12)

where

Ψ̃1(σ) = (H − σ)−1ρ̂ |Ψα〉 , (13)

Ψ̃2(σ) = (H − σ)−1ÂV|φ−MM ′(Ed,d)〉 (14)

and σ = σR+ iσI . Equation (12) shows that L [FMM ′ ] (σ)
can be calculated without explicit knowledge of FMM ′ ,
provided that one solves the two equations

(H − σ)
∣∣∣Ψ̃1

〉
= ρ̂ |Ψα〉 , (15)

(H − σ)
∣∣∣Ψ̃2

〉
= ÂV|φ−MM ′(Ed,d)〉 . (16)

The quantities Ψ̃1 and Ψ̃2 have finite norms and thus only
bound-state techniques are required to obtain the solu-
tions of eqs. (15) and (16).

We use expansions over a basis set of localized func-
tions consisting of correlated hyperspherical harmonics
(CHH) multiplied by hyperradial functions, which lead
to rather large Hamiltonian matrices. Instead of using a
time-consuming inversion method we directly evaluate the
scalar products in (12) with the Lanczos technique as ex-
plained in ref. [13].

After having calculated L[FMM ′ ](σ) one obtains the
function FMM ′(E), and thus TMM ′(Ed,d), via the inver-
sion of the LIT. We perform the inversion as described
in [14] (for other inversion methods, see [15]).

3 Results

In our calculation we use the semi-realistic MT-I/III po-
tential [16] as NN interaction. This potential acts in the
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Fig. 1. Angular distribution of FL at εd,d = 35 MeV and
q2

µ = 4.79 fm−2 without any FSI (dashed curve) and with
inclusion of Coulomb-FSI (full curve); also shown the PWIA
result of [4] (dotted curve).

even NN states (S = 0, T = 1 and S = 1, T = 0), while
there is no interaction in the odd NN states (S = 0, T = 0
and S = 1, T = 1). Below pion threshold the MT-I/III
potential leads to rather good descriptions of the NN s-
wave phase shifts 3S1 and 1S0. The Coulomb interaction is
considered in addition. As already mentioned, the ground
state of 4He as well as Ψ̃ of eqs. (15) and (16) are cal-
culated using the CHH expansion method. In order to
speed up the convergence, state-independent correlations
are introduced as in [17] (our 4He wave function is identi-
cal with the CHH Ψα of [18]). The deuteron ground-state
wave function is determined by a numerical solution of the
radial Schrödinger equation. As proton electric form factor
we take the usual dipole parametrization. The transition
matrix elements (6) and (7) are calculated in the form of
partial-wave expansions. For the Born term we take into
account multipoles up to order L = 20, while for the FSI
term we include multipoles up to L = 5. We checked that
with such an expansion a sufficent convergence is reached.

In this work we consider the 4He(e, e′d) reactions mea-
sured in the above-mentioned NIKHEF experiment [5].
This corresponds to the following kinematical settings:
relative energy of the two final deuterons εd,d = 35
MeV, missing momentum range 100MeV/c ≤ |pm| ≤
150MeV/c (pm = q−pd), and four-momentum transfers
q2µ = 1.75, 2.49, 3.36 and 4.79 fm−2.

We start our discussion considering the effect of the
Coulomb FSI. In fig. 1 results are shown for the highest
of the four considered momentum transfers. As one may
expect the effect is very small and only visible in the cross-
section minimum around θd = 50 degrees. Similarly, small
effects of the Coulomb FSI are found for the other three
momentum transfers. Also shown in fig. 1 is the PWIA re-
sult of [4], where a harmonic oscillator (HO) s-state wave
function is taken for the 4He ground state, this ground
state as well as the deuteron ground states are the only
differences to our PWIA calculation (dashed curve). Al-
though such a ground-state model is rather different from
ours, one finds rather similar results in both calculations



50 The European Physical Journal A

θd(deg)

θd(deg) θd(deg)

θd(deg)

F L
[f

m
  
 ]

3
F L

[f
m

  
 ]

3

F
L

[f
m

  
 ]

3
F L

[f
m

  
 ]

3

q   = 1.75 fmµ

2  −2

q   = 2.49 fmµ

2  −2

q   = 3.36 fmµ

2  −2
q   = 4.79 fmµ

2  −2

−1

−2

−3

0

−1

−2

−3

0

−1

−2

−3

−1

−2

−3

(a ) (b )

(c ) (d )
−4

PWIA

PWIA+FSI

PWIA

PWIA+FSI

PWIA

PWIA+FSI

PWIA

PWIA+FSI

10

10

10

10

10

10

10

10

10

10

10

10

10

10
 0  20  40  60  80  100  120  140  160  180

 0  20  40  60  80  100  120  140  160  180  0  20  40  60  80  100  120  140  160 180

 0  20  40  60  80  100 120  140  160  180
10

Fig. 2. Angular distribution of FL with (full curve) and without (dashed curve) FSI contribution at εd,d = 35 MeV and
momentum transfers as indicated in the figure.

for the cross-section minimum, while at forward and back-
ward angles the HO ground state leads to an increase of
the cross-section by about a factor of two.

In fig. 2 we illustrate the effect of the full FSI for
all four considered momentum transfers. Though the po-
sitions of the minima at about 50 degrees are hardly
changed, it is readily evident that FSI is very important
for all four considered momentum transfers. For the lower
two q-values one obtains reductions of strength by about
a factor of 5, while the shapes of the angular distribution
remain almost unchanged. On the contrary, for the two
higher momentum transfers also the shape is affected. One
finds stronger decreases of FL only in the forward region
and for deuteron angles beyond 100 degrees and accord-
ingly much less pronounced minima.

In fig. 3 we show the differential cross-section result-
ing from the calculated FL at q2µ = 4.79 fm−2. Differ-
ent from the PWIA case the calculation with inclusion
of FSI does not exhibit a minimum, but shows a rather
constant fall-off with increasing deuteron knock-out angle.
As already seen in fig. 2 the cross-section is significantly
reduced by FSI for forward directions and beyond 100 de-
grees. In comparison to the experimental cross-section at
θd ' 15 degrees one finds for the PWIA an overestimation
by about a factor of 2.6 and an underestimation by about
a factor of 1.7 for the full calculation.

In fig. 4 we make a comparison of our results with
experimental data also for the other considered momen-
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Fig. 3. Angular distribution of differential cross-section at
εd,d = 35 MeV and q2

µ = 4.79 fm−2 with (full curve) and with-
out (dashed curve) FSI; also shown the experimental result
from [5] (dot).

tum transfers. One sees that the rather strong reductions
of the cross-sections due to FSI is by far not sufficient
for an agreement with experiment at the lower momen-
tum transfers. In fact the disagreement with experiment
becomes more and more pronounced with decreasing mo-
mentum transfer. For the lowest q-value the experimental
cross-section is overestimated by almost an order of mag-
nitude. We mention again that an inclusion of the here
not considered transverse current contributions should not
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Fig. 4. Differential cross-section at εd,d = 35 MeV and aver-
aged over 100 MeV ≤ |pm| ≤ 150 MeV/c as function of q2

µ with
(full curve) and without FSI (dashed curve) in comparison to
experimental data (dots) [5]; also shown results from [6] with
an HO 4He ground state and FSI in a d-d cluster model for
|pm| = 125 MeV/c (dotted curve).

lead to significant changes. In fact in ref. [6] it was shown
that the one-body current increases the PWIA result by
less than 20% for the lower three-momentum transfers
and by about 25% for q2

µ = 4.79 fm−2. Additional two-
body currents are expected to be small because of the
isoscalar nature of the 4He(e, e′d)d reaction. In fig. 4 we
also show theoretical results from [6] (note that the calcu-
lation of [6] is made for |pm| = 125 MeV/c and thus the
cross-section has not been averaged over the experimen-
tal range 100 ≤ |pm| ≤ 150 MeV/c, we checked that the
difference is not important). A considerably smaller dis-
crepancy between theory and experiment is found than in
our calculation. It should be pointed out that in [6] FSI is
not calculated microscopically as in our case, but modelled
via a central phenomenological potential between the two
outgoing deuterons. As already mentioned the 4He ground
state of [6] is a simple harmonic-oscillator wave function.

In order to better understand the origin of the differ-
ences between the two calculations we show in fig. 5 the
corresponding PWIA results. One notices that a large part
of the differences of fig. 4 are already found for the PWIA
results and thus are caused by the different ground-state
wave functions. In the figure we also illustrate the PWIA
calculation of Morita taken from [6], where correlations
are introduced in the 4He ground state via the ATMS
method [19]. The ATMS and HO results are rather simi-
lar and considerably lower than ours below q2

µ = 2.5 fm−2.
The different results show that it is not very likely that
a fully realistic calculation of the 4He ground state could
close the gap to experiment at lower momentum transfer.
Most probably one needs a more realistic description of
the FSI for the four-nucleon final state. It should be noted
that the FSI effects of the present work and those of [6]
are not very different, in fact in both cases one finds sim-
ilar reductions of the corresponding PWIA cross-sections.
However, we want to emphasize again that there are prin-
cipal differences for the treatment of FSI in both calcula-
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Fig. 5. Various PWIA results for the differential cross-section
(kinematics as in fig. 4, but with |pm| = 125 MeV/c): present
work (full curve), HO [6] (dotted curve), and Morita’s ATMS
from [6] (dashed curve).

tions. On the other hand, both FSI calculations have in
common that only central potentials between nucleons or,
respectively, deuterons are taken into account. Probably,
a consideration of tensor and other realistic force terms
could change the picture significantly.

We summarize our work as follows. We have calculated
the 4He(e, e′d)d reaction taking into account the full four-
nucleon dynamics in inital and final states. Such two-body
knock-out reactions are considered as an excellent tool to
determine two-body ground-state correlations. In fact the
comparison of our PWIA results with corresponding re-
sults from other calculations show a non-negligible sensi-
tivity of the cross-section to ground-state correlations. On
the other hand, we find that FSI effects are even more im-
portant leading to a strong reduction of the cross-section.
We thus confirm similar results from ref. [6], where, how-
ever, FSI was considered in a d-d cluster model only and
not as in our case microscopically via a NN interaction.
Compared to experimental data our theoretical results
show deviations up to about 50% in the range 3.3 fm−2

≤ q2µ ≤ 4.8 fm−2, but exhibit a considerable overestima-
tion of the experimental cross-section at lower momen-
tum transfers. As already pointed out a more realistic
4He ground state will most likely not be sufficient for a
satisfying improvement, whereas a more realistic nuclear
interaction also for the final four-nucleon state might lead
to an agreement of theoretical and experimental results.
Admittedly the MT-I/III potential model is rather sim-
ple, but for the electromagnetic break-up of the three- and
four-nucleon systems it has been shown that it leads gen-
erally to rather similar results than calculations with re-
alistic nuclear forces (total photoabsorption cross-sections
of 3H/3He [20] and of 4He [18,21,22], 3H/3He(e, e′) in-
elastic longitudinal form factors [23]). In addition, also for
the 4He(e, e′) inelastic longitudinal form factor with the
MT-I/III potential one finds a rather good agreement with
experimental data [17]. However, in the present case with
a final d-d state it might be possible that the tensor force
in the final state plays a crucial role and thus a central
potential model is insufficient.
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